Chapter 5

Dual space

e The dual space Ty M of Tp M is the space of linear mappings

w:TpM — R. O
We will write the action of w on vp € TpM as w(vp) or sometimes
as (w|vp) .

Linearity of the mapping w means

w(up + avp) = w(up) + aw(vp), (5.1)
Yup,vp € TpM and a € R.

The dual space is a vector space under the operations of vector ad-
dition and scalar multiplication defined by

a1wWi + asw2 : Vp — a1Wwi (’Up) + GQWQ(UP) . (52)

e The elements of Tp M are called dual vectors, covectors,
cotangent vectors etc. O

A dual space can be defined for any vector space V as the space of
linear mappings V' — R (or V' — C if V' is a complex vector space).

Example:
Vector Dual vector
column vectors row vector
kets 1) bras (¢|
functions linear functionals, etc.O

e Given a function on a manifold f : M — R, every vector at
P produces a number, v,(f) € R Vv, € TpM . Thus f defines a
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covector df, given by df(v,) = v,(f) called the differential or
gradient of f. O
Since v, is linear, so is df,

df(UP + awP) = (UP + awP)(f)
— 0, () + aw, (f) (53)
Yo, w, € TpM,a € R.

Thus df € Tp M.

Proposition: TH5M is also n-dimensional.

Proof: Consider a chart ¢ with coordinate functions z* . Each 2
is a smooth function z° : M — R. then the differentials da? satisfy

i 9 _(9 iy 9 i 1
de <6xj>P_(8:cj>p($)_8xj (zhe )w(P)

The differentials da’ are covectors, as we already know. So we
have constructed n covectors in T5 M . Next consider a linear combi-
nation of these covectors, w = w;dz?. If this vanishes, it must vanish
on every one of the basis vectors. In other words,

w:0:>w<a> =0
0x? ) p

= w;dz! <8> =0
0l ) p
= w0} =0 e w;=0. (5.5)

=65, (5.4)

So the dz? are linearly independent.
Finally, given any covector w, consider the covector A\ = w —
w (,a )P dz’. Then letting this act on a coordinate basis vector, we

ox?
get
A <a)
0zl ) p
=w 9y w 0 da’ 9
B 0zl ) p ozt ) p ozl ) p
0 0 »
“(am),~(z), 5= 69
So A vanishes on all vectors, since the <88]> form a basis. Thus
/) p

the dz! span T »M , so TpM is n-dimensional.
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Also, as we have just seen, any covector w € T M can be written
as

w = widz’ where w; =w ( 0 ) , (5.7)
ox' ) p

so in particular for w = df, we get

oneu(@),-(H),, o

This justifies the name gradient.

It is straightforward to calculate the effect of switching to another
overlapping chart, i.e. a coordinate transformation. In a new chart
¢’ where the coordinates are y* (and the transition functions are thus
y'(x)) we can use Eq. (5.8) to write the gradient of y’ as

i Ay’ j
dy' = <6xj>de] (5.9)

This is the result of coordinate transformations on a basis of covec-
tors.

Since {(82:@) } is the dual basis in TpM to {dz'}, in order
P

for { <8ai> } to be the dual basis to {dy’} we must have
¥/p

@), ), o

These formulae can be generalized to arbitrary bases.
Given a vector v, it is not meaningful to talk about its dual, but
given a basis {e, }, we can define its dual basis {w*} by w*(ep) = 9 .
We can make a change of bases by a linear transformation,

w® = W' = A%®, eq — € = (AH)ley, (5.11)

with A a non-singular matrix, so that w'®(e;) = 05 .
Given a 1-form A we can write it in both bases,

A= Aw? = Nw = N Afw® | (5.12)

from which it follows that X/, = (A=) )\, .
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Similarly, if v is a vector, we can write
v =%, = 1'%, = v (A1) ]e,, (5.13)

and it follows that v¢ = Agvb.
e  (Quantities which transform like A\, are called covariant, while
those transforming like v® are called contravariant. O



