
Chapter 4

Tangent Space

• The set of all tangent vectors (to all curves) at some point P ∈
M is the tangent space TPM at P. 2

Proposition: TPM is a vector space with the same dimension-
ality n as the manifold M.

Proof: We need to show that TPM is a vector space, i.e.

XP + YP ∈ TPM , (4.1)

aXP ∈ TPM , (4.2)

∀XP , YP ∈ TPM, a ∈ R.

That is, given curves γ, µ passing through P such that XP =
γ̇P , YP = µ̇P , we need a curve λ passing through P such that
λ̇P (f) = XP (f) + YP (f)∀f ∈ C∞(M).

Define λ : I → Rn in some chart ϕ around P by λ = ϕ ◦ γ + ϕ ◦
µ− ϕ(P ). Then λ is a curve in Rn, and

λ = ϕ−1 ◦ λ : I →M (4.3)

is a curve with the desired property. 2

Note: we cannot define λ = γ + µ−P because addition does not
make sense on the right hand side.

The proof of the other part works similarly. (Exercise!)
To see that TPM has n basis vectors, we consider a chart ϕ with

coordinates xi. Then take n curves λk such that

ϕ ◦ λk(t) =
(
x1(P ), · · · , xk(P ) + t, · · · , xn(P )

)
, (4.4)
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i.e., only the k-th coordinate varies along t. So λk is like the axis of
the k-th coordinate (but only in some open neighbourhood of P ).

Now denote the tangent vector to λk at P by

(
∂

∂xk

)
P

, i.e.,

(
∂

∂xk

)
P

f = λ̇k(f)
∣∣∣
P

=
d

dt
(f ◦ λk)

∣∣∣∣
P

. (4.5)

This notation makes sense when we remember Eq. (3.9). Using it we
can write

λ̇k(f)
∣∣∣
P

=

(
∂f

∂xk

)
P

∀f ∈ C∞(M). (4.6)

Note that

(
∂

∂xk

)
P

is notation. We should understand this as

(
∂

∂xk

)
P

f =
∂

∂xk
(
f ◦ ϕ−1

)∣∣∣∣
ϕ(P )

≡ ∂f

∂xk

∣∣∣∣
ϕ(P )

(4.7)

in a chart around P . The

(
∂

∂xk

)
P

are defined only when this chart

is given, but these are vectors on the manifold at P , not on Rn.
Let us now show that the tangent space at P has λ̇k|P as a basis.

Take any vector vP ∈ TPM , which is the tangent vector to some
curve γ at P . (We may sometimes refer to P as γ(0) or as t = 0.)
Then

vP (f) =
d

dt
(f ◦ γ)

∣∣∣∣
t=0

(4.8)

=
d

dt
((f ◦ ϕ−1)

∣∣∣∣
ϕ(P )

◦ (ϕ ◦ γ))

∣∣∣∣∣
t=0

. (4.9)

Note that ϕ ◦ γ : I → Rn, t 7→ (x1(γ(t)), · · · , xn(γ(t))) are the coor-
dinates of the curve γ, so we can use the chain rule of differentiation
to write

vP (f) =
∂

∂xi
(f ◦ ϕ−1)

∣∣∣∣
ϕ(P )

d

dt
(xi ◦ γ)

∣∣∣∣
t=0

(4.10)

=
∂

∂xi
(f ◦ ϕ−1)

∣∣∣∣
ϕ(P )

vP (xi) . (4.11)
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The first factor is exactly as shown in Eq. (4.7), so we can write

vP (f) =

(
∂

∂xk

)
P

fvP (xi) ∀f ∈ C∞(M) (4.12)

i.e., we can write

vP = vi
P

(
∂

∂xk

)
P

∀vP ∈ TPM (4.13)

where vi
P

= vP (xi). Thus the vectors
(

∂
∂xk

)
P

span TPM . These are
to be thought of as tangents to the coordinate curves in ϕ. These
can be shown to be linearly independent as well, so

(
∂

∂xk

)
P

form a

basis of TPM and vi
P

are the components of vP in that basis.

The
(

∂
∂xk

)
P

are called coordinate basis vectors and the set{(
∂

∂xk

)
P

}
is called the coordinate basis.

It can be shown quite easily that for any smooth (actually C1)
function f a vector vP defines a derivation f 7→ vP (f) , i.e., satisfies
linearity and Leibniz rule,

vP (f + αg) = vP (f) + αvP (g) (4.14)

vP (fg) = vP (f)g(P ) + f(P )vP (g) (4.15)

∀f, g ∈ C1(M) andα ∈ R (4.16)


