Chapter 23

Fiber bundles

Consider a manifold M with the tangent bundle TM = |J TpM.

Let us look at this more closely. T'M can be thought of aslzlelg/loriginal
manifold M with a tangent space stuck at each point P € M. Thus
there is a projection map 7 : TM — M, TpM +— P, which
associates the point P € M with TpM.

Then we can say that T M consists of pooints P € M and vectors
v € TpM as an ordered pair (P,v,). Then in the neighbourhood of
any point P, we can think of TM as a product manifold, i.e. as
the set of ordered pairs (P,v,).

This is generalized to the definition of a fiber bundle. Locally
a fiber bundle is a product manifold £ = B x F' with the following
properties.
e B is a manifold called the base manifold, and F' is another
manifold called the typical fiber or the standard fiber.
e  There is a projection map 7 : E — B, and if P € B, the pre-
image 7~ !(P) is homeomorphic, i.e. bicontinuously isomorphic, to
the standard fiber. O

F is called the total space, but usually it is also called the bun-
dle, even though the bundle is actually the triple (E, 7, B).
e F is locally a product space. We express this in the following
way. Given an open set U; of B, the pre-image 7~ (U;) is homeomor-
phic to U; X F', or in other words there is a bicontinuous isomorphism
@; : w1 (U;) = U; x F. The set {U; , @;} is called a local trivializa

tion of the bundle. O
e If E can be written globally as a product space, i.e. E = BxXF,
it is called a trivial bundle. O
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e  This description includes a homeomorphism 7~!(P) — F for
each P € U; . Let us denote this map by h;(P). Then in some overlap
U; N U;j the fiber on P, 7~ 1(P), has homeomorphisms h;(P) and
h;(P) onto F. It follows that h;(P) - h;(P)~! is a homeomorphism
F — F. These are called transition functions. The transition
functions F' — F form a group, called the structure group of F'. O

Let us consider an example. Suppose B = S'. Then the tan-
gent bundle £ = TS! has F = R and n(P,v) — P, where
P e S',v € TS'. Consider a covering of S' by open sets U; , and
let the coordinates of U; C S be denoted by );. Then any vector at

TpS! can be written as v = aiﬁ (no sum) for P € Uj;.
i

So we can define a homeomorphism h;(P) : TpS' — R,v
a; (fixed 7). If P € U; NU; there are two such homeomorphisms
TS' - R, and since \; and Aj are independent, a; and a; are also
independent.

Then h;(P) - hj(P)™ : F — F (or R — R) maps a; to a;.
The homeomorphism, which in this case relates the component of
the vector in two coordinate systems, is simply multiplication by the
number r;; = % € R\{0}. So the structure group is R\{0} with

multiplication.
For an n-dimensional manifold M, the structure group of T'M
is GL(n,R).
e A fiber bundle where the standard fiber is a vector space is called
a vector bundle. O
A cylinder can be made by glueing two opposite edges of a flat
strip of paper. This is then a Cartesian product of acircle S! with
a line segment I. So B = S',F = I and this is a trivial bundle,
i.e. globally a product space. On the other hand, a Mdbius strip is
obtained by twisting the strip and then glueing. Locally for some
open set U C S' we can still write a segment of the Mdbius strip as
U x I, but the total space is no longer a product space. As a bundle,
the M&6bius strip is non-trivial.
e  Given two bundles (Eq, 71, By) and (Eq,ms, By), the relevant
or useful maps between these are those which preserve the bundle
structure locally, i.e. those which map fibers into fibers. They are
called bundle morphisms. O
A bundle morphism is a pair of maps (F, f),F : By — Es, f :
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By — B, such that m o F = f om. (This is of course better
understood in terms of a commutative diagram.)

Not all systems of coordinates are appropriate for a bundle. But it
is possible to define a set of fiber coordinates in the following way.
Given a differentiable fiber bundle with n-dimensional base manifold
B and p-dimensional fiber F', the coordinates of the bundle are given
by bundle morphisms onto open sets of R™ x RP . O
e Given a manifold M the tangent space TpM , consider Ap =
(e1, -+ ,en), a set of n linearly independent vectors at P. Ap is a
basis in TpM . The typical fiber in the frame bundle is the set of
all bases, F'= {Ap} . O

Given a particular basis Ap = (€1,---,€,), any basis Ap may
be expressed as

e; =ale;. (23.1)

The numbers a! can be thought of as the components of a matrix,

which must be invertible so that we can recover the original basis
from the new one. Thus, starting from any one basis, any other basis
can be reached by an n x n invertible matrix, and any n X n invertible
matrix produces a new basis. So there is a bijection between the set
of all frames in Tp.M and GL(n,R).

Clearly the structure group of the typical fiber of the frame bun-
dle is also GL(n ,R).
e A fiber bundle in which the typical fiber F' is identical (or home-
omorphic) to the structure group G, and G acts on F' by left trans-
lation is called a principal fiber bundle. O

Example: 1. Typical fiber = S!, structure group U(1).

2. Typical fiber = S2, structure group SU(2).

3. Bundle of frames, for which the typical fiber is GL(n,R), as
is the structure group.
e A section of a fiber bundle (E, 7, B) is a mapping s : B —
E,pw s(p), where p € B,s(p) € 71 (p). So we can also say 7o s
= identity. O

Example: A vector field is a section of the tangent bundle, v :
P—wv,.

Example: A function on M is a section of the bundle which
locally looks like M x R (or M x C if we are talking about complex
functions).
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e  Starting from the tangent bundle we can define the cotangent
bundle, in which the typical fiber is the dual space of the tangent
space. This is written as T*M . As we have seen before, a section of

T*M is a 1-form field on M. O
e Remember that a vector bundle F — E > B is a bundle in
which the typical fiber F' is a vector space. O

e A vector bundle (E, 7, B, F,G) with typical fiber F' and struc-
ture group G is said to be associated to the principal bundle
(P,m,B,G) by the representation {D(g)} of G on F if its transi-
tion functions are the images under D of the transition functions of
P. O

That is, suppose we have a covering {U;} of B, and local trivial-
ization of P with respect to this covering is ®; : 77 1(U;) — U; x G,
which is essentially the same as writing ®; , : 7l z) > G, zeU;.
Then the transition functions of P are of the form

gij =@ 0®, 1 U;NU; —» G. (23.2)

The transition functions of E corresponding to the same covering of
B are given by ¢; : 7 1(U;) — U; x F with ¢; o ;7% = D(g;5)-
That is, if v; and v; are images of the same vector v, € F, under
overlapping trivializations ¢; and ¢; , we must have

v = D (gij (.1‘)) ’Uj . (23.3)

A more physical way of saying this is that if two observers look at
the same vector at the same point, their observations are relatted by
a group transformation (p,v) ~ (p, D(g;;v) .

e  These relations are what are called gauge transformations in
physics, and G is called the gauge group. Usually G is a Lie group
for reasons of continuity. O

Fields appearing in various physical theories are sections of vector
bundles, which in some trivialization look like U, x V where U, is
some open neighborhood of the point we are interested in, and V' is
a vector space. V carries a representation of some group G, usually
a Lie group, which characterizes the theory.

To discuss this a little more concretely, let us consider an associ-
ated vector bundle (E, 7, B, F,G) of a principal bundle (P, 7, B, G).
Then the transition functions are in some representation of the group
G . Because the fiber carries a representation {D(g)} of G, there are
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always linear transformations 7, : E, — E, which are members of
the representation {D(g)}. Let us write the space of all sections of
this bundle as I'(E). An element of I'(E) is a map from the base
spacce to the bundle. Such a map assigns an element of V to each
point of the base space.

e  We say that a linear map T : I'(F) — T'(F) is a gauge trans
formation if at each point x of the base space, T, € {D(g)} for
some ¢, i.e. if

T (z,0)q — (2,D(9)0)a, (23.4)

for some g € G and for (z,v), € Uy X F. In other words, a gauge
transformation is a representation-valued linear transformation of
the sections at each point of the base space. The right hand side is
often written as (x, gv), - O

This definition is independent of the choice of U, . To see this,
consider a point x € U, N Ug . Then

(,0)a = (%, gpav)s - (23.5)

In the other notation we have been using, v, and vg are images of the
same vector v, € V;, and vg = D(gga)va - A gauge transformation
T acts as

Ty (z,0)q — (2,9V)q - (23.6)
But we also have
(#, gv)a = (7, ggagv)s (23.7)
using Eq. (23.5). So it is also true that
Ty : (2, 9pav)p = (%, 98a9v) - (23.8)

Since F' carries a representation of G, we can think of gv as a
change of variables, i.e. define v = ggov. Then Eq. (23.8) can be
written also as

T, : (z,v)g— (z,9'V)s, (23.9)

where now ¢’ = ggaggga_l . So T is a gauge transformation in Ug as
well. The definition of a gauge transformation is independent of the
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choice of U, , but T itself is not. The set of all gauge transformations
¥ is a group, with

(gh)(z) = g(@)h(x), (97 ")(z) = (g9(x)) . (23.10)

e The groups G and ¢ arre both called the gauge group by
different people. O



