Chapter 19

Stokes’ theorem

We will next discuss a very beautiful result called Stokes’ formula.
This is actually a theorem, but we will not prove it, only state the
result and discuss its applications. So for us it is only a formula, but
still deep and beautiful.

e A submanifold S is a subset of points in M such that any point
in § has an open neighbourhoood in M for which there is some chart
where (n —m) coordinates vanish. S is then m-dimensional. O
e  Suppose U is a region of an oriented manifold M. The bound
ary oU of U is a submanifold of dimension n — 1 which divides M
in such a way that any curve joining a point in &/ with a point in U°
must contain a point in OU .

Now suppose U has an oriented smooth boundary 0l . Then OU
is automatically an oriented manifold, by considering the restrictions
of the charts on U to OU .

e  Consider a smooth (n — 1) form in M. Stokes’ formula says

that
/dw - /w. (19.1)

7 ou

If M is a compact manifold with boundary 0M , this formula can
be applied to all of M. If w vanishes outside some compact region
we can again set U = M. Also, U can be a submanifold in another
manifold, like a 2-surface in a 3-manifold. O

Example: Let & = [0,1]. Then a function f : M — R is a
0-form, and df = f'(x)dz is a 1-form. Take the orientation of M to
be from 0 to 1. Then OM consists of the points + = 0 and x =1,
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and Stokes’ formula says that
Jar=[1
M oM
1
i.e. /f’(x)dm = f(1) — f(0). (19.2)
0

Example: Consider a 2-d disk D in R?, with boundary 9D.
Take a 1-form A. Then Stokes’ formula says

/A = /dA. (19.3)
oD D

Let us seee this equation in a chart. We can write

dA = 9;A;jdz" A da? (19.4)
. d d .
A evaluated on 9D can be written as A T where i tangent
to dD . So we can write A 4 = Aididt, and
dt dt

oD D

/(81A2 — 09 A1) da' A dx?
D

= / (01Ag — Do Ay) d*x. (19.5)
#(D)

Similarly for higher forms on higher dimensional manifolds.

e Gauss’ divergence theorem is a special case of Stokes’ the-
orem. Before getting to Gauss’ theorem, we need to make a new
definition. Consider an n-form w # 0 on an n-dimensional manifold.
We can write this in a chart as

w= fdz' A Adz"

1
= —feurp, Tt A N dat (19.6)
n!
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Given a vector field v, its contraction with w is

1
Lyw=w(v, ) = mwmuz---un ot dxh? Ao N dat
= folda® Ao ANda" — foPdat AdaB A Ada™ + -
(19.7)
Then we can calculate
d(tyw) = dw(v,---) = o (fo)dz' ANdz* A - A da"
+0o(fv?) dat Ndz? A --- A da"
oo A Op(fo") dat AdxP A A da”
= Ou(for)daxt Ndz® A - A da™
1
= ?Ou(fv“)w. (19.8)

In particular, if w is the volume form, we can write

Vgl

— N H
w = €pur-pp dTt N Ndat

n!
L8, (" /Jg]) (wol) . (19.9)

Vldl

e  This is called the divergence of the vector field v.

There is another expression for the divergence. Remember that
given a vector field v, we can define a one-form, also called v, with
components defined with the help of the metric,

d(ty(vol)) =

Oy = G (19.10)
Consider *v , which has components

(*U)Ml“'ﬂnfl =V |9|€u1---un71uglm Uy
= V/I9l€us - ppn_1 0" - (19.11)
V9l

= *V = Wﬁul...un_lu’vudm’ul VANKIERA dxﬂnfl
n — .

dxv = 0y, <<n~_’gll)!€mmunmvu> dat™ N dxtt N - N datn Tt

= (_1_)711; €prepin_1pt (8% (Mv“)) dztt A - A dxhn

(n
(19.12)
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Both p and p, must be different from (u1,--- , fin—1), SO 4 = fin, .
Thus in each term of the sum, the choice of (u1,---,pn—1) auto-
matically selects p,(= u), so a sum over (ug,--- , py,) overcounts n
times. So we can write

d*xv = wem...#n (Gu (Mv“)) dztt N - A dahr

_ (—1)”—1\/%8#(@@“)(@01). (19.13)

Since this is an n-form in n dimensions, we can calculate from
here that

( 1)n+s 1

Vgl

where as before s is the signature of the manifold, i.e. the number
of negative entries in the metric in a locally diagonal form.

Let us now go back to Stokes’ formula. Take a region U of M
which is covered by a single chart and has an orientable boundary
OU as before. Then we find

(v Iglv*) (19.14)

*dxv =

lg|vt) (vol) = /d(Lv(’UOl))

u

= /Lv(’UOl). (19.15)

ou

|

d
Now suppose b is a 1-form normal to JU , i.e. b(dt) = 0 for any

vector — tangent to OU , and « is an (n — 1)-form such that bA « =
(vol) . Since all n-forms are proportional, « always exists. For the
same reason, if b # 0 on U , it is unique up to a factor. And b # 0 on
OU because OU is defined as the submanifold where one coc?rdmate is
constant, usually set to zero, so that one component of — vanishes
at any point on U , and therefore the corresponding component of
b can be chosen to be non-zero.

So b is unique up to a rescaling b — b’ = fb for some nonvanishing
function f. But we can always scale @ — o/ = f '« so that &' Aa/ =
b A «. Further, if we restrict a to OU , i.e. if « acts only on tangent
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vectors to OU , we find that « is an (n — 1)-form on an (n — 1)-
dimensional manifold, so it is unique up to scaling. Therefore, a is
unique once b is given. Finally, for any vector v,

Lv(vol)‘au = Lv(b/\a)‘au (19.16)

is an (n — 1)-form on OU which acts only on vectors tangent to Ol .
Then

Lv(b/\a)‘au = b(v)a’au (19.17)

because all terms of the form b A 1, gives zero for any choice of
(n — 1) vectors on OU .
Then we have

(+/Iglv") (vol) /b( Yo

ou

_ / (not)a.  (19.18)

ou

|

Usually b is taken to have norm 1. Then « is the volume form on
oU , and we can write

/ Tl (wol) = [ 00\l | (1919

ou



