Chapter 16

Metric tensor

e A metric on a vector space V is a function g : VxV — R
which is

i) bilinear:

g(avy + vy, w) = ag(vy,w) + g(ve, w)
g(v,w; + aws) = g(v,w1) + ag(v,ws), (16.1)
i.e., g isa (0,2) tensor;

i1) symmetric:

g(v,w) = g(w,v); (16.2)

i7i) non-degenerate:
glv,w)=0 Vw =v=0. (16.3)
O
e If for some v, w # 0, we find that g(v,w) = 0, we say that v, w
are orthogonal. O
e Given a metric g on V', we can always find an orthonormal
basis {e,} such that g(ey,e,) =0if p#v and £1if p=wv. O

e  If the number of (4+1)’s is p and the number of (—1)’s is ¢, we
say that the metric has signature (p,q) .

We have defined a metric for a vector space. We can generalize
this definition to a manifold M by the following.
e A metric g on a manifold M is a (0, 2) tensor field such that if
(v,w) are smooth vector fields, g(v,w) is a smooth function on M,
and has the properties (16.1), (16.2) and (16.3) mentioned earlier. O
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62 Chapter 16. Metric tensor

It is possible to show that smoothness implies that the signature
is constant on any connected component of M, and we will assume
that it is constant on all of M .

A vector space becomes related to its dual space by the metric.
Given a vector space V with metric g, and vector v defines a linear
map g(v, ) : V = R, w— g(v,w) € R. Thus g(v,-) € V* where V*
is the dual space of V. But g(v,-) is itself linear in v, so the map
V — V* defined by g(v,-) is linear. Since g is non-degenerate, this
map is an isomorphism. It then follows that on a manifold we can
use the metric to define a linear isomorphism between vectors and
1-forms.

In a basis, the components of the metric are g, = g(e, ,e,) . This
is an n X n matrix in an n-dimensional manifold. We can thus write
g(v,w) = guv w” in terms of the components. Non-degeneracy
implies that this matrix is invertible. Let g"” denote the inverse
matrix. Then, by definition of an inverse matrix, we have

gm,g")‘ = (52 = g’\”gw,. (16.4)

Then the linear isomorphism takes the following form.
i) If v = v'e, is a vector field in a chart, and {M\} is the dual
basis to {e,},
9(v, ) = v A, (16.5)

— v
where v, = g, V" .

it) If A = A M is a 1-form written in a basis {\}, the corre-
sponding vector field is A*e, , where A* = g""' A, .

This is the isomorphism between vector fields and 1-forms. (We
could of course define a similar isomorphism between vectors and
covectors without referring to a manifold.) A similar isomorphism
holds for tensors, e.g. in terms of components,

T T

v

Tu” Ty (16.6)
TP = TH 7 = T = Ty —-++ (16.7)
These correspondences are not equalities — the components are not

equal. What it means is that, if we know one set of components, say
THP and the metric, we also know every other set of components.
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e  Using the fact that a non-degenerate metric defines a 1-1 linear
map between vectors and 1-forms, we can define an inner product
of 1—forms, by

(A| B) = ¢" A, B, (16.8)

for 1-forms A, B . This result is independent of the choice of basis, i.e.
independent of the coordinate system, just like the inner product
of vector fields,

<'U ‘ w) - g(U, ’U)) = guuvuwy . (169)

g
Given a manifold with metric, there is a canonical volume form
dV (sometimes written as vol), which in a coordinate chart reads

dV = /| det g |dzt A - A da™ . (16.10)

Note that despite the notation, this is not a 1-form, nor the gradient
of some function V. This is clearly a volume form because it is an
n-form which is non-zero everywhere, as g, is non-degenerate.

We need to show that this definition is independent of the chart.
Take an overlapping chart. Then in the new chart, the corresponding

volume form is
v’ = ,/|detg£“,|dx'1 Ao Nda™. (16.11)

We wish to show that dV’ = dV . In the overlap,

o ozt v
€T

Then dz't A -+ Adz™ = (det A)da' A--- Ada™.
On the other hand, if we look at the components of the metric
tensor in the new chart,

g;liy = g(a;ua;)
ox® 0xP
(mamwaﬁ>
1\« _1\B
=g ((A7)5 00, (A7) 05)
— (A (A gas. (16.13)

e
0
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Taking determinants, we find

det g/, = (det A)7? (det gu) - (16.14)

\/Idet g, | = |det A “h/ldet gl (16.15)

and so dV' =dV .
° This is called the metric volume form and written as

Thus

dV = /|gldz A -+ A da™ (16.16)

in a chart. O

When we write dV , sometimes we mean the n-form as defined
above, and sometimes we mean \/Hd"x, the measure for the usual
integral. Another way of writing the volume form in a chart is in
terms of its components,

dv = 'n"g’ €y AT N - N dat (16.17)
where € is the totally antisymmetric Levi-Civita symbol, with
€12.n, = +1. Thus +/|g| €4,...,, are the components of the volume
form.



