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Chapter 16

Metric tensor

• A metric on a vector space V is a function g : V × V → R
which is

i) bilinear:

g(av1 + v2, w) = ag(v1, w) + g(v2, w)

g(v, w1 + aw2) = g(v, w1) + ag(v, w2) , (16.1)

i.e., g is a (0,2) tensor;

ii) symmetric:
g(v, w) = g(w, v); (16.2)

iii) non-degenerate:

g(v, w) = 0 ∀w ⇒ v = 0 . (16.3)

2

• If for some v, w 6= 0 , we find that g(v, w) = 0 , we say that v, w
are orthogonal. 2

• Given a metric g on V , we can always find an orthonormal

basis {eµ} such that g(eµ, eν) = 0 if µ 6= ν and ±1 if µ = ν . 2

• If the number of (+1)’s is p and the number of (−1)’s is q , we
say that the metric has signature (p, q) .

We have defined a metric for a vector space. We can generalize
this definition to a manifold M by the following.
• A metric g on a manifoldM is a (0, 2) tensor field such that if
(v, w) are smooth vector fields, g(v, w) is a smooth function on M ,
and has the properties (16.1), (16.2) and (16.3) mentioned earlier. 2
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62 Chapter 16. Metric tensor

It is possible to show that smoothness implies that the signature
is constant on any connected component of M , and we will assume
that it is constant on all of M .

A vector space becomes related to its dual space by the metric.
Given a vector space V with metric g , and vector v defines a linear
map g(v, ·) : V → R , w 7→ g(v, w) ∈ R . Thus g(v, ·) ∈ V ∗ where V ∗

is the dual space of V . But g(v, ·) is itself linear in v , so the map
V → V ∗ defined by g(v, ·) is linear. Since g is non-degenerate, this
map is an isomorphism. It then follows that on a manifold we can
use the metric to define a linear isomorphism between vectors and
1-forms.

In a basis, the components of the metric are gµν = g(eµ , eν) . This
is an n× n matrix in an n-dimensional manifold. We can thus write
g(v, w) = gµνv

µwν in terms of the components. Non-degeneracy
implies that this matrix is invertible. Let gµν denote the inverse
matrix. Then, by definition of an inverse matrix, we have

gµνg
νλ = δλµ = gλνgµν . (16.4)

Then the linear isomorphism takes the following form.

i) If v = vµeµ is a vector field in a chart, and {λµ} is the dual
basis to {eµ} ,

g(v, ·) = vµλ
µ , (16.5)

where vµ = gµνv
ν .

ii) If A = Aµλ
µ is a 1-form written in a basis {λµ} , the corre-

sponding vector field is Aµeµ , where Aµ = gµνAν .

This is the isomorphism between vector fields and 1-forms. (We
could of course define a similar isomorphism between vectors and
covectors without referring to a manifold.) A similar isomorphism
holds for tensors, e.g. in terms of components,

Tµν ←→ Tµν ←→ T ν
µ ←→ Tµν (16.6)

Tµνρ ··· ←→ Tµν ···ρ ←→ Tµνρ ··· ←→ Tµνρ
··· ←→ · · · (16.7)

These correspondences are not equalities — the components are not
equal. What it means is that, if we know one set of components, say
Tµνρ ··· , and the metric, we also know every other set of components.
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• Using the fact that a non-degenerate metric defines a 1-1 linear
map between vectors and 1-forms, we can define an inner product

of 1−forms, by
〈A | B〉 = gµνAµBν (16.8)

for 1-forms A,B . This result is independent of the choice of basis, i.e.
independent of the coordinate system, just like the inner product

of vector fields,

〈v | w〉 = g(v, w) = gµνv
µwν . (16.9)

2

Given a manifold with metric, there is a canonical volume form
dV (sometimes written as vol) , which in a coordinate chart reads

dV =
√
|det gµν |dx1 ∧ · · · ∧ dxn . (16.10)

Note that despite the notation, this is not a 1-form, nor the gradient
of some function V . This is clearly a volume form because it is an
n-form which is non-zero everywhere, as gµν is non-degenerate.

We need to show that this definition is independent of the chart.
Take an overlapping chart. Then in the new chart, the corresponding
volume form is

dV ′ =
√
|det g′µν |dx′1 ∧ · · · ∧ dx′n . (16.11)

We wish to show that dV ′ = dV . In the overlap,

dx′µ =
∂x′µ

∂xν
dxν = Aµνdx

ν (say) (16.12)

Then dx′1 ∧ · · · ∧ dx′n = (detA)dx1 ∧ · · · ∧ dxn .
On the other hand, if we look at the components of the metric

tensor in the new chart,

g′µν = g(∂′µ, ∂
′
ν)

=

(
∂xα

∂x′µ
∂α ,

∂xβ

∂x′ν
∂β

)
= g

((
A−1

)α
µ
∂α ,

(
A−1

)β
ν
∂β

)
=
(
A−1

)α
µ

(
A−1

)β
ν
gαβ . (16.13)
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64 Chapter 16. Metric tensor

Taking determinants, we find

det g′µν = (detA)−2 (det gµν) . (16.14)

Thus √
| det g′µν | = |detA|−1

√
| det gµν | , (16.15)

and so dV ′ = dV .
• This is called the metric volume form and written as

dV =
√
|g|dx1 ∧ · · · ∧ dxn (16.16)

in a chart. 2

When we write dV , sometimes we mean the n-form as defined
above, and sometimes we mean

√
|g|dnx , the measure for the usual

integral. Another way of writing the volume form in a chart is in
terms of its components,

dV =

√
|g|
n!

εµ1···µndx
µ1 ∧ · · · ∧ dxµn (16.17)

where ε is the totally antisymmetric Levi-Civita symbol, with
ε12···n = +1 . Thus

√
|g| εµ1···µn are the components of the volume

form.


