Chapter 14

Exterior derivative

The exterior derivative is a generalization of the gradient of a func-
tion. It is a map from p-forms to (p + 1)-forms. This should be a
derivation, so it should be linear,

dla+w) =da+ dw Vp-forms o, w. (14.1)

This should also satisfy Leibniz rule, but the algebra of p-forms is
not a commutative algebra but a graded commutator algebra, i.e.,
involves a factor of (—1)P? for exchanges,

aNp=(-1DPIEAa, (14.2)

as we have seen. We wish to define the exterior derivative so that it
is compatible with this property, i.e.,

dlanp)=daNB+ (-1)PdBNa. (14.3)
Alternatively we can write
dlaNp)=danp+(—1)PandS. (14.4)

This will be the Leibniz rule for wedge products. Note that it gives
the correct result when one or both of «, 8 are O-forms, i.e., functions.
The two formulas are identical by virtue of the fact that df is a
(¢ + 1)-form, so that

aANdB = (—1)ParDdg A . (14.5)

We will try to define the exterior derivative in a way such that it has
these properties.
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Let us define the exterior derivative of a p-form w in a chart as
1

dw = — Oiwiy ., dzt Adz™ A -+ A dx' (14.6)
p!

This clearly has the first property of linearity. To check the (graded)
Leibniz rule, let us write a A 8 in components. Then

d(aAB) = I%q!ai (g iy By ) Az Adz™ A -+ A dads
— p,iq, [(0i0tiri,) Birego + v, (83B51gs)] dat A da A -+ A dact
= p'iq' (&-ail,,,ip) By dz' ANdz™ A - Adx™ A dadt A - dade
—I—pliql (—1)P ayy.., (aiﬁjl...jq) dz™ A - Adz Adat A dxIt A - - dade
=da AP+ (=1)Pands. (14.7)

A third property of the exterior derivative immediately follows
from here,
d?=0. (14.8)

To see this, we write

1 . . .
d(dw) = p d (Owiy i, da’ A dz™ A - - - dz')
1 ‘ . . .
= H 0jOiwiy ..ipdx? N dx' Ndx"™ A ---dx' . (14.9)

But the wedge product is antisymmetric, dz/ A dz® = —da? A dad |
and the indices are summed over, so the above object must be anti-
symmetric in J; ,0; . But that vanishes. So d?> = 0 on all forms.

Note that we can also write

1 i i
dw = H (dwil...ip) Adx™ A ---dx'? (1410)

where the object in parentheses is a gradient 1-form corresponding
to the gradient of the component.

Consider a 1-form A = A, dx* where A, are smooth functions on
M. Then using this definition we can write

dA = (dAy) N dz”
= 0, A dxt N dx”
1 v
=3 (0 A, — 0,A,) dat A dx
= (dA)y = 0uA, — 0L A, . (14.11)
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We can generalize this result to write for a p-form,
1

o= aam...“pda:“l Ao Adxtr (14.12)
1
do = p (dovyy .y ) dats A A dat'?
1
= mamam,,ﬂp]dm“ VAN d!E“l VANCERIVAY dxﬂp
= (da)ppy - opyy = 8[uam,..‘up] (14.13)

Example: For p = 11i.e. for a 1-form A we get from this formula
(dA),, = Ay — 0, Ay, in agreement with our previous calculation.

For p = 2 we have a 2-form, call it «. Then using this formula
we get

(da)/u/)\ = a[ual/)\}
= aHOéV)\ - 8yau)\ + 81/@)\# - a)\()é,/“ + a)\Oé“,, - @LOQ\,, .
(14.14)

Note that d is not defined on arbitrary tensors, but only on forms.
Od

By definition, d?> = 0 on any p-form. So if & = df3, it follows that
da = 0. But given a p-form « for which da = 0, can we say that
there must be some (p — 1)-form /3 such that o = dfg?

e This is a good place to introduce some terminology. Any form
w such that dw = 0 is called closed, whereas any form « such that
a = df is called exact. O

So every exact form is closed. Is every closed form exact? The
answer is yes, in a sufficiently small neighbourhood. We say that
every closed form is locally exact. Note that if a p-form a = dg, we
cannot uniquely specify the (p — 1)-form S since for any (p — 2)-form
v, we can always write a = df’, where ' = 8+ d.

Thus a more precise statement is that given any p-form « such
that da = 0 in a neighbourhood of some point P, there is some
neighbourhood of this point and some (p—1)-form /3 such that o = df
in that neighbourhood. But this may not be true globally. This
statement is known as the Poincaré lemma. O

Example: In R? remove the origin. Consider the 1-form

_ xdy — ydx

o (14.15)
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Then
1 222 1 292
da:<2 s 2>d:13/\dy—<2 I 2>dy/\d:13
x+y (22 +y?) x“+y (22 + y?)
2 2 2
= dendy—2-2 Y ndy =0. (14.16)
oty (22 +y?)

Introduce polar coordinates r,0 with x = rcosf@,y = rsinf.
Then

dx = drcos @ — rsin 0df dy = drsin € + r cos 0df

rcos B (sin @dr + rcos6df)  rsinf (cos Odr — rsin 0d)
@ = 2 B 2
2 20 +sin?0) do
_ (cos 4;51n ) =df. (14.17)
,

Thus « is exact, but 8 is multivalued so there is no function f
such that a = df everywhere. In other words, a = df is exact only
in a neighbourhood small enough that 6 remains single-valued.



