Chapter 13

Differential forms

There is a special class of tensor fields, which is so useful as to have
a separate treatment. There are called differential p—forms or
p—Fforms for short.

e Ap—formisa (0,p) tensor which is completely antisymmetric,
i.e., given vector fields vy, -+, vp,

W1, V0 0p) = —w (V1 Vg Ve )
(13.1
for any pair ¢, j . O

A 0-form is defined to be a function, i.e. an element of C*°(M),
and a 1-form is as defined earlier.

The antisymmetry of any p-form implies that it will give a non-
zero result only when the p vectors are linearly independent. On the
other hand, no more than n vectors can be linearly independent in
an n-dimensional manifold. So p < n.

Consider a 2-form A . Given any two vector fields v , vy, we have
A(vy ,v9) = —A(vg,v1). Then the components of A in a chart are

Aij =A (61 s 8]) = _Aji . (13.2)

Similarly, for a p-form w, the components are wj,..;, , and compo-
nents are multiplied by (—1) whenever any two indices are inter-
changed.

n
It follows that a p-form has < ) independent components in n-
p

dimensions.
Any 1-form produces a function when acting on a vector field. So
given a pair of 1-forms A, B, it is possible to construct a 2-form w
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by defining
w(u,v) = A(u)B(v) — B(u)A(v), Yu,v. (13.3)

e  This is usually written asw = A® B— B® A, where ® is called
the outer product. O
e Then the above construction defines a product written as

w=AANB=-BAA, (13.4)

and called the wedge product. Clearly, w is a 2-form. O

Let us work in a coordinate basis, but the results we find can be
generalized to any basis. The coordinate bases for the vector fields,
{6;} , and 1-forms, {dz'}, satisfy dx'(9;) = (5; A 1-form A can be
written as A = A;dx*, and a vector field v can be written as v = v*0; ,
so that A(v) = A;v*. Then for the w defined above and for any pair
of vector fields u, v,

w(u,v) = A(u)B(v) — B(u)A(v)
= AiuiBj’Uj — BiuiAjUj
= (AZB] — BZA]) ’U,i'Uj . (135)

The components of w are w;; = w(d;, ;) , so that
w(u,v) = w('d; ,v79;) = wiju'? . (13.6)

Then w;; = A;Bj — B;A; for the 2-form defined above. We can now
construct a basis for 2-forms, which we write as dx* A dx? ,

da' Nda? = do' @ da? — do? @ da’. (13.7)

Then a 2-form can be expanded in this basis as

1 . :
w= awijdxl Adx? (13.8)
because then
1 . . ) .
w(u,v) = T (da* @ da? — da? @ dz*) (u,v)
1 o - -
= —wjj (U — ') = wijul’ . (13.9)

2!
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Similarly, a basis for p—forms is
dz A ANdr'r = da @ - @ da'v) (13.10)

where the square brackets stand for total antisymmetrization: all
even permutations of the indices are added and all the odd permu-
tations are subtracted. (Caution: some books define the ‘square
brackets’ as antisymmetrization with a factor 1/p!.) For example,
for a 3-form, a basis is

dat Adad AdzF = dit @ da? @ da¥ — do? ® da' @ da®
+dz? @ da® @ dat — da* @ da? ® da
+da* @ dr' @ de? — da’ @ da* @ dad . (13.11)
Then an arbitrary 3-form ) can be written as
1 . .
Q= S Qyjpda’ A dal A da® . (13.12)

Note that there is a sum over indices, so that the factorial goes away if
we write each basis 3-form up to permutations, i.e. treating different
permutations as equivalent. Thus a p—form « can be written in
terms of its components as

1 . .
o= IT!ailmip dz"™ A --- Ndzx' . (13.13)

Examples: A 2-form in two dimensions can be written as

1 . .
w = —w;jdx" Ada?

2!
1
=5 (wiodz! A da? + worda® A da')
!
= 5 ((/.)12 - w21) d.Z'l A\ dl’z
= wip dzt A dz?. (13.14)

A 2-form in three dimensions can be written as

1 . .
w = gwijdxz A dz?

= wiadz' A da® + wos dz® A da® + wsy dad A daxt (13.15)
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Od
In three dimensions, consider two 1-forms o = oyda?, f = Bida’.

Then
aANB= (b —oib) %d:pi A da?
aiﬂjdazi A da?
(alﬂg — ag,@l) da;l A\ da;2
+ (01253 — 01352) dZE2 A\ dZE3
+ (01351 — 01153) dz> A daxt. (13.16)

The components are like the cross product of vectors in three dimen-
sions. So we can think of the wedge product as a generalization of
the cross product.

e  We can also define the wedge product of a p—form « and a
g—form ( as a (p + ¢)—form satistying, for any p + ¢ vector fields

U1y yUptqs
1

a (v, ,Up+q):p,—q,§ (=D)* a @ B (P (v1,- ,vpiq)) -
lg! &

(13.17)

Here P stands for a permutation of the vector fields, and deg P is 0 or

1 for even and odd permutations, respectively. In the outer product

on the right hand side, « acts on the first p vector fields in a given

permutation P, and § acts on the remaining ¢ vector fields. O

The wedge product above can also be defined in terms of the
components of & and S in a chart as follows.

1

Q= = Qi dz' A -+ A dx
p!
1 . .
8 = a 5j1"'jq dx?' A - A dzle
1 . . . .
alAf = P iy iy Birjg (dm“ ERRWA dx“’) A (d:t]1 ARRRWA dx]q) .

(13.18)

Note that a A 8 =0 if p+ ¢ > n, and that a term in which some 4
is equal to some j must vanish because of the antisymmetry of the
wedge product.

It can be shown by explicit calculation that wedge products are
associative,

aN(BAy)=(aANB)Ary. (13.19)
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Cross-products are not associative, so there is a distinction between
cross-products and wedge products. In fact, for 1-forms in three
dimensions, the above equation is analogous to the identity for the
triple product of vectors,

a-(bxc)=(axb) c. (13.20)
For a p-form « and g-form (3, we find
aNp=(-1DPEAa. (13.21)

Proof: Consider the wedge product written in terms of the com-
ponents. We can ignore the parentheses separating the basis forms
since the wedge product is associative. Then we exchange the basis
1-forms. One exchange gives a factor of —1,

da' A dx?t = —da?t A da' (13.22)
Continuing this process, we get

dz™ A--- Ada' AdxIt A - A dade
= (=1)Pda? Adx™ A - Adx™ AdzT? A - A dade

= (=1)Pda?* A - Adads Adat Ao Adz' . (13.23)

Putting back the components, we find

aNf= (DB AN (13.24)
as wanted. O
e  The wedge product defines an algebra on the space of differential
forms. It is called a graded commutative algebra. O

e Given a vector field v, we can define its contraction with a
p-form by
Lyw = w(v, -+ +) (13.25)

with p—1 empty slots. This is a (p—1)-form. Note that the position

of v only affects the sign of the contracted form. O
Example: Consider a 2-form made of the wedge product of two

1-forms, w =AAp = A® pu— p® A. Then contraction by v gives

Lyw =w(v, *) = Av)p — p(v)A = —w(+,v). (13.26)
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If we have a p-form w = %ng‘l---ip dxz A--- Adz™ , its contraction
with a vector field v = v9; is
1 o )
Ly = m Wiiyorriy V' AT N - A dz'™ (13.27)
Note the sum over indices. To see how the factor becomes ﬁ , We
write the contraction as
1 . o
Ly = p Wiy iy dx™ N - A da'? (vl&-) . (13.28)
Since the contraction is done in the first slot, so we consider the
action of each basis 1-form dx'* on §; by carrying daz** to the first
position and then writing a §;* . This gives a factor of (—1) for each
exchange, but we get the same factor by rearranging the indices of
w, thus getting a +1 for each index. This leads to an overall factor
of p.
e given a diffeomorphism ¢ : M; — My, the pullback of a 1-
form A (on Ms) is p*\, defined by

©*A(V) = M) (13.29)
for any vector field v on Mj . O
Then we can consider the pullback p*dz? of a basis 1-form dx?.
For a general 1-form \ = \;dz’, we have ¢*\ = ¢*(\;dx?) . But
O*AW) = Mpev) = N dzt (@) . (13.30)
Now, dz’(¢sv) = ¢*dx'(v) and the thing on the right hand side is a
function on My , so we can write this as
PAW) = (p*N)p*da (v), (13.31)
where p*\; are now functions on My, i.e.

(2l = Ml (1332
So we can write p*\ = (p*\;) ¢*dx’. For the wedge product of two
1-forms,
P (AAp)(u,v) = (AA p)(pwu, )

= A @ p(pxtt, pxv) — 1 @ APt , p5)

= Apsu)p(pxv) = p(psu)A(pwv)

= @ Mu)p u(v) — " p(u)e" A(v)

= (" AN ) (u,v). (13.33)
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Since u, v are arbitrary vector fields it follows that

¢rANR) =@ AN
e (dx* Nda?) = o dxt N\ pdr’ . (13.34)

Since the wedge product is associative, we can write (by assuming
an obvious generalization of the above formula)

" <da:i Adzd A dxk> = * ((ala:Z A dmj) A dxk>
= * (dazi A dmj) A o*dak
= o*dz’ A p*dad A p*da®, (13.35)

and we can continue this for any number of basis 1-forms. So for any
p-form w, let us define the pullback ¢*w by

QO*OJ('Ul y T T 7Up) =w (QO*'Ul y T T 7%0*1)13) ) (1336)

and in terms of components, by

rw = I% (¢ wiyiy) O dr™ Ao Adat (13.37)
We assumed above that the pullback of the wedge product of a
2-form and a 1-form is the wedge product of the pullbacks of the
respective forms, but it is not necessary to make that assumption —
it can be shown explicitly by taking three vector fields and following
the arguments used earlier for the wedge product of two 1-forms.
Then for any p-form « and g-form 8 we can calculate from this
that

P (anB) =g ane™B. (13.38)

Thus pullbacks commute with (are distributive over) wedge products.



