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Chapter 10

Local flows

We met local flows and integral curves in Chapter 6. Given a vector
field v , write its local flow as φt .
• The collection φt for t < ε (for some ε > 0, or alternatively for
t < 1) is a one−parameter group of local diffeomorphisms . 2

Consider the vector field in a neighbourhood U of a point Q ∈
M . Since φt : U → M, Q 7→ γQ(t) is local diffeomorphism , i.e.
diffeomorphism for sufficiently small values of t , we can use φt to push
forward vector fields. At some point P we have the curve φt(P ) . We
push forward a vector field at t = ε to t = 0 and compare with the
vector field at t = 0 .

We recall that for a map ϕ :M1 →M2 the pullback of a function
f ∈ C∞(M2) is defined as

ϕ∗f = f ◦ ϕ :M1 → R , (10.1)

and ϕ∗f ∈ C∞(M1) if ϕ is C∞ .
The pushforward of a vector vP is defined by

ϕ∗vP (f) = vP (f ◦ ϕ) = vP (ϕ∗f) (10.2)

vP ∈ TPM1 , ϕ∗vP ∈ Tϕ(P )M2 . (10.3)

If ϕ is a diffeomorphism, we can define the pushforward of a vector
field v by

ϕ∗v(f)|ϕ(P ) = v (f ◦ ϕ)|P
i.e. ϕ∗v(f)|Q = v (f ◦ ϕ)|ϕ−1Q

= v (ϕ∗f)|ϕ−1Q . (10.4)
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34 Chapter 10. Local flows

We can rewrite this definition in several different ways,

(ϕ∗v)(f) = v (f ◦ ϕ) ◦ ϕ−1

= (ϕ−1)∗ (v (f ◦ ϕ))

= (ϕ−1)∗ (v (ϕ∗f)) . (10.5)

• If ϕ : M1 → M2 is not invertible, ϕ∗v is not a vector field on
M2 . If ϕ−1 exists but is not differentiable, ϕ∗v is not differentiable.
But there are some ϕ and some v such that ϕ∗v is a differentiable
vector field, even if ϕ is not invertible or ϕ−1 is not differentiable.
Then v and ϕ∗v are said to be ϕ−related. 2

Proposition: Given a diffeomorphism ϕ :M1 →M2 (say both
C∞ manifolds) the pushforward ϕ∗ is an isomorphism on the Lie
algebra of vector fields, i.e.

ϕ∗[u , v] = [ϕ∗u , ϕ∗v] . (10.6)

Proof:

ϕ∗[u , v](f) = [u , v] (f ◦ ϕ) ◦ ϕ−1

= u (v (f ◦ ϕ)) ◦ ϕ−1 − u↔ v , (10.7)

while [ϕ∗u , ϕ∗v](f) = ϕ∗u (ϕ∗v (f))− u↔ v

= u (ϕ∗v (f) ◦ ϕ) ◦ ϕ−1 − u↔ v

= u
((
v (f ◦ ϕ) ◦ ϕ−1

)
◦ ϕ
)
◦ ϕ−1 − u↔ v

= u (v (f ◦ ϕ)) ◦ ϕ−1 − u↔ v . (10.8)

2

• A vector field v is said to be invariant under a diffeomorphism
ϕ :M→M if ϕ∗v = v , i.e. if ϕ∗(vP ) = vϕ(P ) for all P ∈M . 2

We can write for any f ∈ C∞(M)

(ϕ∗v) (f) =
(
ϕ−1

)∗
(v (ϕ∗f))

⇒ ϕ∗ ((ϕ∗v) (f)) = v (ϕ∗f) ,

⇒ ϕ∗ ◦ ϕ∗v = v ◦ ϕ∗ . (10.9)

So if v is an invariant vector field, we can write

ϕ∗ ◦ v = v ◦ ϕ∗ . (10.10)
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This expresses invariance under ϕ , and is satisfied by all differential
operators invariant under ϕ .

Consider a vector field u , and the local flow (or one-parameter
diffeomorphism group) φt corresponding to u ,

φt(Q) = γQ(t) , γ̇Q(t) = u(γQ(t)) . (10.11)

But for any f ∈ C∞(M) ,

γ̇Q(f) =
d

dt

(
f ◦ γQ(t)

)
=

d

dt
(f ◦ φt(Q))

=
d

dt
(φ∗t (f)) = uγ

Q
(t)(f) ≡ u(f)

∣∣∣
γ
Q
(t)

(10.12)

At t = 0 we get the equation

d

dt
(φ∗t (f))

∣∣∣
t=0

= u(f)
∣∣∣
Q

(10.13)

We can also write

d

dt
(φ∗t f) (Q) = u(f) (φt(Q)) = φ∗tu(f)(Q) . (10.14)

This formula can be used to solve linear partial differential equations
of the form

∂

∂t
f (x, t) =

n∑
i=1

vi(x)
∂

∂xi
f(x, t) (10.15)

with initial condition f(x, 0) = g(x) and everything smooth. This is
an equation on Rn+1 , so it can be on a chart for a manifold as well.

We can treat vi(x) as components of a vector field v . Then a
solution to this equation is

f(x, t) = φ∗t g(x)

≡ g (φt(x)) ≡ g ◦ φt(x) , (10.16)

where φt is the flow of v .
Proof:

∂

∂t
f(x, t) =

d

dt
(φ∗t g) = v(f) ≡ vi ∂f

∂xi
, (10.17)
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36 Chapter 10. Local flows

using Eq. (10.13) . 2

Thus the partial differential equation can be solved by finding the
integral curves of v (the flow of v) and then by pushing (also called
dragging) g along those curves. It can be shown, using well-known
theorems about the uniqueness of solutions to first order partial dif-
ferential equations, that this solution is also unique.

Example: Consider the equation in 2+1 dimensions

∂

∂t
f(x, t) = (x− y)

(
∂f

∂x
− ∂f

∂y

)
(10.18)

with initial condition f(x, 0) = x2 + y2 . The corresponding vector
field is v(x) = (x − y,−x + y) . The integral curve passing through
the point P = (x0, y0) is given by the coordinates

γ(t) = (vx(P )t+ x0, vy(P )t+ y0) , (10.19)

so the integral curve passing through (x, y) in our example is given
by

γ(t) = ((x− y)t+ x, (−x+ y)t+ y) (10.20)

= Φt(x, y) ,

the flow of v. So the solution is

f(x, t) = Φ∗t f(x, 0) = f(x, 0) ◦ Φt(x, y)

= [(x− y)t+ x]2 + [(−x+ y)t+ y]2

= (x− y)2t2 + x2 + 2(x− y)xt+ (x− y)2t2 + y2 − 2(x− y)yt

= 2(x− y)2t2 + (x2 + y2)(1 + 2t)− 4xyt . (10.21)


